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INTRODUCTICN

A situation whilch sometimes arises is that
in which a time series y(t), t = 0,1,... 18 to be
modelled as a function of another time series x(t),
t =0,l,... (or more generally as a function of k series
xl(t),...,xk(t); t = 0,1,...). It is often the case
that for any time t, y(t) will depand not only on x(t),
but also on x(t = 1), x(t = 2),...,X(t = r) for some in-
teger r > G, and sometimes on the complete past history
of x(t). When all of the series are second order sta-
tionary and a large number of observations 1s avallable,
the powerful methods of spectral analysis may be employ-
ed to estimate various types of linear models, On the
other hand, when relatively few observations are avail-
able and the zeries involved may be nonstationary, at
least to the extent of having trending means, thcse
methods may not be appropriate, and yet 1t may be desir-
able tc have some sort of frequency decomposition of the
series. (For instance, it may be of interest to model

trends and stationary parts of the series separately.)
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The purpose of this study 1is to investigate
some of the properties of a method whereby y(t) is
modelled not directly as a linear function of x(t),
X{(t = 1),.0.yx{(t = r), but rather as a linear function
of some of the principal components of x(t),x(t - 1),
eeeyx{t « r), Chapter I, formulated in terms of a set
of random variables y,xl,....xp, investigates the co-
variance structure among these variables which will
yield the result that the first m < p principal com-
ponents of xl....,xp provide a better predictor of y
than does any subset xil,...,x1 .

m

In chapter 1I, principal component processes
of x(t),x(t = 1),¢0.,x(t = n) are defined and their pro-
perties noted., It 1s shown that when x(t) is one of the
usual types of second order stationary processes, the
principal component processes effect a partial frequency
decomposition of x(t).

In chapter III, 1t is shcwn that for certain

processes contalning deterministic components, certain

of the princlpal component processes tend to fllter out

these deterministic components.
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An example of the behavior of the principal
component processes of an artificially generated process
18 shown in the appendix together with the principal
components of an autoregressive process, some of tae
transfer functions corresponding to the eigenvectors
of a moving average process, and the first two prinéipal
component processes derived from a series representing

quarterly total U.S. personal income,
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CHAPTER I

REGRESSION ON PRINCIPAL COMPONENTS

Let X be the p component random vector i

x
x
with covariance matrix I, It will be assumed that EX = 0O,

since the mean vectcr does not enter into the following
discussion. There exists an orthogonal linear transforma-
tion

Z = o'X
such that the covariance matrix of 2Z,

Y
1' U
E(22') « A = . .

where i, >...> xp are the roots (eigenvalues) of the
characteristic equation |f - \I| = 0, and ¢ = (01...¢p).
with QJ the eigenvector corresponding to AJ' The rth
component of Z, Zr = ¢r'x is called the pth principal
component of X and has maximum variance of all normelized
(.r' ‘r = 1) linear combinations uncorrelated with

zl....,z In particular Z, the first princlpal

r-1°
component has maximum variance of any normalized linear

4




combination. orecver,

|4 P D
I E(z)% = I Apwtrfiwerie IOE(x? (1.0
1=} i=1 {=1

- Principal components have found application
egspecially in exploratory studies where (he number p
of variables under consideration may be large. It may
happen that a few of the principal compecnents explain
most of the varlation (4s shown by (1.0)) of the ori-
ginal p variables, Anocther criterion often applied to
the use of principal components is that they should have
some sort of "reasonable™ interpretation in their own
right.

When tle varlables xl,...,xp are to be used as
possible explanatory variahles in a linear model, the
use of principal components gives the additional zdvan-
tage that the ZJ's are mutually uncorrelated. A discuss-
ion of the use of principal components in regression
analysis is given in [ 8 ] along with some examples deal-
ing with economic modelling,

The vectors ¢1,...,¢° form a basis for the p
dimensional Euclldean space Hp. Ir wl,...,wp is any

other orthonormal basis for Rp, it can be shown

(10 p. 4001 that for any k < p,
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E{I | x - £ 2 ¢ | Y<ElE}lzx = T U ¥ |1},
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(1.1)
% ¥
where ¢ = {.11 P ¥ o= .11 and U = ¥ *'X, or
i . 1 . vV
‘¢1p ¥ip

-

that the k components Zl"""’zk give a better approxie-
mation in the sense of expected squared error to xl,...,xp
than do the k coefficients of any other orthogon&l baslis.

P
Moreover, when X is scaled so that I E(x,?) = 1,

i=1
then,
k k ( y
- LA logi, <=« I o logo 1.2
1=1 1 1= 41 1’

where p, = E(Uiz). Equality holds in (1.2) only when

k k
Iy - I p for every 0 < k < p. (1l.1) and (1.2)
1=1 1=) 1

show that for any fixed k < p, the first k principal
components carry at least as much of the information
contalined in the set xl,...,xp of variables as any k

linear combinations, including any subset x%;...,xik.
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When xl,...,xp are ' he cunsldered as cossibie explana-
tory variabies in a Linear mode! for ancther varlable,
say, ¥y, then it is of interest %o be able vy characterize

when the principa! components zl,...,z provide rmore ine

K
formation relevant te y than some other linear combina-
tions Ul’.-.’Uk-

Let y, X' = (xl""'xp) be given randcm variables

such that Ey = E(xi) - 0, i=),,,.,p3 EXX' = &, EyX' = [

12°

252 = Ip). As before let X, > A2 eee2 lp and °1""'°p
be the eigenvalues and corresponding orthonormalized
eigenvectors of L. Let e, denote the vector 0]

0

1] 1ith row

0

[0}

and 3 be the regression vector of y on X (i.e, ‘he vec-
tor minimizing the expression E(y - X'8)°.) Suppose now
that y is to be predicted bty a linear combination of

Kk < p random variables which are themselves linear combin-
ations of X_,...,X_. One possibllity is to chonse some

1 p
subset Xy ,eeyXy while ancther is to choose the first
1 k

k principal components Zl....,Vk.
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Let Z = |, N X, where Q\k) = (¢1"“'¢k)’ and
z
K
'wl' . V
let W |t o= 5y unere (X 2 (e ,iLL,e ).
i
. 1 K
A,
. K,

Let y, ® Z'; denote the predictor of y based on Z,
)

where a = 1s the vector minimizing E(y - Z'a)z,

{ 2|

and let §w - W'E be the pred.cuor of y tased on W,

where ¢ is the vector minimizing E(y = W'c)2. Then

Yoy = X‘¢(k)

a = x'e, wnile v, = xX'E(KG = X'y,
Definition: Let u be a vector in Rp and define the
norm i|ull by |lul]? = (uyu), where (u,v) = u'tv.

a 2 ~ ~
Lemma (1.1): E(y - yz) < E{y = yw)2 1rf |8 - 4!

< ||8 -1]] .
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Proof: E{(v - 92)“ a F{y « X'9)" = R{{y - X'8)

-~
2
<

~ R A ~ "~
+ X8 = ®)) = E(r - X'8)° = RI(B - &) WXT(R-9)]

= 5ly - w82+ [|R - o|". simtlarly, R(y-y)?
= By - X'é)? + !la - %1€ from which the lemma

follows,

>

:
H
%
k]
2
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2
3
3

Thecrem 1l.1: E(y - 92)?< E(y - yy)° iff

"3
g L (2'1 - g i )1 < T (Z‘l f)x where
3 12 y, 019185 < Iyn = Ix)loy,
g 1=]1 "1
H
X { N
‘é . 0 » L) [ ] * L ] L] L ] L] » * L ] L ] . * » - L) e > .0
) .
% -
: . 11 1,1 1,1
. § 0 vea oL PPk Lo
3 . . . 1.1 1.1 1.1
5 by = 0...02Y0 ,.0220.,..0%2kg ... 0
. 14 11 1.1
0 [ AN ] oklo ...ok20 ...Okko - a8 0
0. - [ ] L ] L ] L ] . L ] L ] L ] [ ] L ] ” L ] L ] L 3 * - £ ) L] L] 0
\ r,
i1

and where o 7K is the jkth element cf Sk"1 where

{ o vee O A
SRV 1,1,
s L ] L]
k -
o L B 0
1.4 Leg
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1 Proof: |18 = #||° = (3 « 6,8 =~ 0) = (8,8) - 2(8,8) !
i 0,0, (BB = 107, (B,0) = Broe
;‘ = a (k)2 -1 (k)2 o (k)2
b + 3'0¢° "2 = L, T LS a =1 ,6a. But,
] 3= (E(zz0)"! E(zy) =
i 5 [ECo ¥ xxre ()17 £(o(¥) xy) |
k)! K)q=1 k)?
L - [o(R) 5K gmL 4l g
1 , 0"
: A -1
‘ : (k)*
‘- = [ 3 . (£¢1-012¢k)] ° 221
i "
k: i X
E 10 | 22
3 ' . (x)' o o=l (k)
s | - ‘ ¢ Iy mATe T Loy
0 a,

~ ‘-] y
so that, (8,8) = 212¢(k AT (K Eyye

~ 1 k)A
(9,8) = 076 = a'elK) rot*’a

¢(k)A-1¢(k)'X¢(R)A-l¢(k)'Z

i 21

(%) pmlpp-1q(k)? . (k) p=14(k)"
’2120 AT AAT S 221 }:12¢ AT+ 22




Hence, ||8 - 4>H2 = f 2-1221 - Xl?db(k)l\ pl¥)’

12 1 Loy

k
I 1
F127 TPo1 T Ipl I godyey Ty,
k
-1 1
=L (7 « I — ¢,0,")2
12 121 Ay 174

21°

similarly, ||8 - ¥]]° = (8,8) - 2(8,¥) + (v,¥).

: (8,9) = 822, wnere ¢ = [E(WW') 1" LE(uy)
3 ' - '
; = [E(E™) xxgt0y 97 g8 'y
=z '
o = [E(k) zE(k)]'l E(k)'zel
1 'e 1
: 1,
. -1  (k)!
= [ . (ze ...Ze )] E b
: ) 1 1, 21
o e,
[t |
] Oy 1 e1eee0 1-1
[.11 1 Y11
N .(k)' -1 (k)!
: r S Zaye
o] evead
L Lk )

- Ly
plpe(ky; =1 (K 7

Thus, (8,¥) = I,, e oy

- < '
(g, ~1p () Toy,s while (¥,v) = wrigw

= Lok
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ez 55 -l s TIRU Yy L p (K)g =1l Yy
h K’k 12 K )

12 k 21 1°

Hence lla - W|l2 =3 s - 212E(k)sk'lE(k)'z

12" “21 21

-1 -
= LolT 7 = 1 din,

and the theorem follows from lemma 1.).

In practice if xl,...,xp are highly inter-

k
1
correlated, then it might be expected thatiil-T; ¢1¢i|

would more closely approximate 1=l then would Ek' If at
the same time, y is essentially equally correlated with
all or many of the xJ's, then it would seem likely that
the inequallity would hold. In particular, this situation
might arise when xl,...,xp are elements of a time series
x(t), x(t = 1), 0.0,x(t = p + 1) and y = y(t).

As an example, suppose x(t) 1s a first order
autoregressive process with x(t) - ,9x(t « 1) = Z(t)
(a white nolse process), Then the covariance matrix I
of x(t), x(t - 1), x(t - 2) can be taken as

1.0 .9 .81
I = [ .9 1,0 .9 ] , with elgenvalues Xl = 2,74,
.81 .9 1,0

A2 = ,19, A3 = .07 and eigenvectors
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s‘ 0571 - -707 -oul']
. oy = | .590] , o, = 0.0 , 6y " .807| .
g 571 .707 -7
f -1 5,232 -4,687 = ,027)
L = -4 ,687 9.431 -4,687 . Letting k = 1,
- 027  -h.687 5.232

1 [ .117 .121 L117 )
—— 0,6, = .121 .125 .121 and
1 11 PEE AN TR '

e o o
e i o, it 3 B RSN

. Letting £.. = (1 .99 .98),
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[ Nol o]
[ Nw R o]

-1 1 .
L,,(T 5 616", = .017 while

4 -1 -
212\2 - 21)221 = 071,
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CHAPTER 1I
STOCHASTIC PROCESSES AND REPRESENTATIONS

The type of stochastlc process x(t) to be con-
s8ldered will be a family of random variables with index
set T, where unless otherwise stated T will denote a
countable set of the real line, so that x(t) is a dise
crete process. The random variables x(t) may be real
or complex valued, but will always be assumed to satisfy
the condition E|x(t)|2< « for all t ¢ T. The mean value
function of x(t) will be denoted by u(t), and unless
otherwise stated 1t will be assumed that u(t) = 0. The
covariance function will be ‘denoted by r(s,t)
= E{x(s) X(t]} vhere the bar denotes complex conjugtte.
Of particular importance 1s the case where x(t) 1s a
second order stationary process. In that case the covari-

ance function has the form

E{x(s) X(s=-t)} = r(t},

and r(t) has the spectral representation

14
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E 1
i I r(t) = ; eltv dF(w),

¥ it
where F(w), the spectral distribution function of x(t),
is real valued, nondecreasing, bounded, and can be

chosen so that F(-w) = 0, F(+e) = r(0), and F(w) is

continuous to the right., If F(w) is absolutely con-

tinuous then f(w) = F'(w) is the spectral density func-

tion of x(t}. In addition, if x(t) is second order

gtationary, it has the spectral representation

i1
x(t) = § et ag(w),

f
where E£(w) is a process of orthogonal increments which can
be chosen so that E £(w) = 0, E|£(w)|2 = F(w), and
EldE(w)I2 = dF(w). (£(w) 1s called the spectral process

associated with x(t).) From this spectral representation

the process x(t) can be thought of as being built up of

mutually orthogonal elementary harmonic oscillations

i

eltv qg(w).
Let x(t) be a second order stationary process and
consider a process y(t) formed from x(t) by a linear

transformation of the type

Gy WP PRUR $2SuNy O EEE AR T GaEs AWy O sumy ey

L A

‘(‘..-
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n
yE) = E by R(E -y, 2.1)
Then
n £
ye) = = b, s ellt=tvluge (y)
vl D X
o n -it w
= e (1 b e V) dg (u).
-t v=l X

Thus, y(t) 43 a second order stationary process with ele-
mentary harmonic oscillations h(w) d £ (w), where h(w)
n -1tvm

= I b e . The covarlance function ry(t) of y(*%)

has the representation

o
' In(w)]? 4 P lu).
-
If x(t) has spectral density function felw) then y(t)
has spectral density function fy(m) = lh(m)|2 fx(w).

Thus for a glven frequency w, fx(u) is multipiied by

2
the amount|h(w)| to give fy(m). Thlis may have the
effect of greatly repressing certain frequencies while

enhancing others., For this reason tha linear operation

( 2.D) may be thought of as a filter applied to the process
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x(t). lh(w)l8 i1s calied the transfer function of the

filter and h(w) the rain of the filter,

oy UMY NN OGN emew

Karhunen - Lo¥yve Representations

Theorem [gee 7 p. 478]
Let x(t) be a stochastic process continuous in quadra-
tic mean and defined for t ¢ T a closed interval. Then
x{t) has an orthogonal representation of the form

o

x{(t) = I wn(t) Zns

n=}

where wn(t) 1s an eigenfunction of the covariance func-

tion R{t,t') = E{x(t) x(¢')}. That 1is

/T R(t,t') wn(t') dt'! = xn wn(t),

Fp Yp(t) Poit) dt = §pne The random variables Z .
are given by

z, = fT x(t) E;(t) dt,

1 ] v o
and the Z,'s have the property that E(Z[ Zn) AL Gmn'

When x(t) i1s 2 finite discrete process, T can be taken

as the set T = {1,2,...,N}, and R(t,t') becomes the
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N X N matrix

R(1,1) «ese R(1,N)

R(2,1) +e.. R(2,N)
(N) .

R - .

R(N,1) .... R(N,N)

»

with eigenvalues Al > ka2 .00 2 AN, and corresponding

orthonormal set of eigenvectors vl.....vn. where

*k (1)
v, " . . The representation for x(t) then
tk(N)
becomes
N
x(t) = I ¢,(t) 2Zn,
n=1
where

N
z = til x(t)'3;(t).

-

4

18

Thus in this case Zn is the nth principal component of

the random variables x{1),...,x(N).

‘rincipal Component Processes

Let x(t), t = 1,2,... be a discrete stochastic

process.

Definition: x(t) will be called covariance stationary if

E{(x(t) = p{t)) (FTBT = uls))} » r(t - 5), where
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u(t) = E x(t). (u(t) is not necessarily constant.) For
any fixed positive integer n let R(™) be the covariance

matrix

!P(O) r(l) s s s P(n) 1

R(n) r{~1l) r{(0). . . . r{n=1)

r(=n) rl=n+1) . . r(0)

9

10(“) 2 xl(n) > Az(“) 2 e 2 kn(n) be the eigenvalues of

R("), and 00(“). ’l(n)""”n(n) be the correaponding set
of orthonormalized eigenvectors,

Definition: The processes z,(“) (t); J = 0,),...,n where

n
2, M) = T o (™) () x(t=v)

vs( J
will be called the principal c~mponent processes of x{(t),
From this definition and the usual properties of

principal components it fellows that:

(1) zo(e) is that linear combination

n
I a4 x(t-1) with maximum variance sub=-
i=0

n
Ject to the restriction that I a 2
1-1 10

-1'

Zl(")(t) is the linear combination

n
)
i=1

a,, x{t=1l) with maximum variance
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n
rublect to the restrictions that [ a 2 w1

1=y 31
n ———
and iilaioail = 0, and so forth for

ZJ“”‘)(c). J = 0,000,0

(51) E(Zi(n)(t) th"5(t)} = Ay 8y

(121) x(t) haa the representation,
n (n)
x(t) = I F,(0) z,n (t).
v=( :
This representation differs in generzl from
the Karhunen-iodve representatior. or the
spectral representation in that the index
t 1s contained in the random element., Thus
the representation is in terms of constants

and random processes rather than random

variables and deterministic functions of t.

2 2
(1v) r(0) = vfol¢“(0)l Ay

| An interpretation of these processes can be seen

more readily in the case that x(t) is a second order
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stationary process, Let x(t) be a discrete stationary
process with spectral process gx(m), and assume more-

over, that x{(t) has a spectral density function fx(w).

Then
n
2. Mgy e ¢ 6. V(u) x(t=v), § = 0,000,n
J ve( J

is a linear operation on x(t) and hence, it follows

that,
{(v) z,{")(¢t) 1s a stationary process,
J

{(vi) ZJ(n)(t) is built up of elementary burmonic

oscillations of the form elt® gv(n)(w)dix(w)

ny -l AW
where gv( () - = < ¢v(n)(k).
k=0
(n)

(vil) A (t) has spectral density function

b

(n)(w)l 2 rx(m) .

fza(n)(w) = !EJ

From (13i), (vi), (vii) it follows that the spectral

representations for x(t) and r(0) may be written in the
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forms
i
x(t) = ;f e a5 (w)
T
n

= [ eit l¢0165 go(m) d&x(w) +...
-1

+ 3 707 m,(w) dE,(w) ),

and

n

r(0) = f fx(m) dw

i

n 2 2
-In (IOO(O)I |go(u)| fpe(w) +...

+ 1o 9012 g (]2 £ (w))aw

which gives a decomposition for the elementary harmonic

itw

oscillations e d&x(w) and the spectral density func=

tion fx(w). From the properties (i) and (11i) it follows
that

n 2 n 2

fn |80(w)| fe(w) dw = wy > fn |n(w)] £ (w) du,

for any h(w) satisfying

n 1ve n 2
n(w) = T b, eV, 1 b =1,
vs=0 v=0

ST T e e T T TR AR et LTI R R R T NS SR T L W AR TET T T TR T AT RS T IRTRETE AT TR R TR e e T s s s A

e ——————. g W




23

Thus, the filter function go(w) passes the most import-
ant portion of the spectrum of x(t), while gl(m),...,gn(w)
pass increasingly smaller portions of fx(m). The exact
properties 6f these fillter functions are determined by

the filter coeffilcients

¢,(k), k = 0,...,n; v=0,...,n

which in turn are determined by the covariance structure
of the process x(t). These properties are further illus=

trated by the following special case,

1odic Proce

Let x(t) be a stationary process such that
x(t + N) = x(t) for some integer N. This process can be
thought of &3 containing only a finite number of elemen-

tary harmonlic oscillations and, hence, has the represen-

tation
N=-1 203
1o e
x(t) = I e 2.2)
( J.O T XJ’ (
where the
1l Nl EEHJ
Xy = N kzo em1¥ R x{k), J§ = 0,...,n=1 are
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mutually orthogonal random variables. (2,2) can be put in
the more usual form by letting

gn“lnjf_g

“ = .
J 2n N
—Nl -2n, 3> 7%

Then (2.2) bacoges

x(t) = L e J Xy -1 < w, <M.
J-O J

From the definition of x(t), E x(t) x(t - (N = J))
= E x(t) X(t + J) or r{n = J) = r(~)). Hence, the
covariance matrix

[ r{0) r(1l) ... r(R=-1)

r{«1) r{(0)... r(N=2)
(N-l) Y

R = L ]

L;(-ﬂbl) r(=N+2)...r(0)

[ r(0) r(1) ... r(i=1)
r(N=1) r(0),. r(N=2)

| r(1) r(2).... r(0)

{s a circular matrix. As such it has eigenvalues given by

N=1
A, = L o k r(k), where p, is an Nth root of
3 ywo 9 J

unity. The corresponding eigenvector is given by
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(n) . 1

iin}

1
¢ (n) = ? fN— (2.3)

12ﬂ§N-121

e J

n
The principal component process ZJ( ,(t) then has the form

12]IJ\; )
zJ(“)m =fe ¥ x(tev) il
1 n-1  120v yogp  i2nk(t=-v)
- r‘T T e N z e ﬂ X,
Yov=Q x=0 X

O A AW K A WAt 05 A8 i e s tt0 e oin e T

: 1 mel Nel  2p(g-k)v 420kt
l = F"“- L z e N e } Xy
j ¥ k=0 w=9)
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20k 21
1 Nl 155t _ gl
- L N§ e - e .

8o that ZJ(t) consists only of the elementary harmonic

214
oscillation at frequency . This may also he seen

from the filter function corresponding to Zj(t), which 1s

P S e
By(w) =y I e

vs(

1 Nl 1(2n - w)v

-‘Iir vEO ©

But x(t) only contains oscillations at frequencies

20k
™ N, k=0,...,N=1 and g (wy) 'ﬁ‘_%k-

["}
The representation (1ii) in this case ylelds

N3 _1 14
x(t) = JEO r ®e. X

)

3
N-1 121,;"1:

- z e X
3=0 s

which 1s identical wlth the spectral representation (2.2).
On the other hand, since x(t + N) = x(t), the process

x(t) consists of only a finite number of distinct random

variables. Thus, considering only the distinct x(t)'s, the




' .
R0 . A TG ) Pk D i
o ST _ Lo o " Ao

“!Wvl‘ﬂ%‘h«%

reprezentation 2.2 ) is identical with the Karhunen rep-

resentation with ZJ = x}.

Since an arbitrary process may be approximated by
a perlodic one by allowing the period to tend to Infinity,
it seems reasonable to inquire whether some of the proe
perties exhibited by the principal component processes for
the periodic case might not hold in some limiting mense
for arbltrary processes. For instance, the form of the

eigenvalues cf the circular matrix

2n3
N=1) N~1 1
*J( = I (e N (K
k=0

r(k)

might surezest that the set (2 (")}3_0 of eigenvalues of
the covariance matrix of a st;t¢onary process might in
some way approzimate its spectral density function,

These ideas are made more precise using the theory
of Toeplitz forms developed by Grenander and Szegd [ 5 1.

Derinition: Let f(x) be a real valued function defined on

n
{-n, M) such that / |f(x)| dx exists, and let c(n)

be
the matrix (c, _ u); ¥, v=0,...,n, where

1 n ~ikx
=3 f e f(x)dx.
k -1

[¢]
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Then c(n)

will ve called the Toeplitz matrix of order n
associated with the function f(x). Similarly, if P(x) is

monotone nondecreasing in {-N,N], the Toeplitz matrix

B
‘

essoclated with F(x) is ¢(7) = {e,_,) where

1 n
« 3 5 e KX gpex).
-1
The quadratic form X c(“) X% 1s called the Toeplitz form
associated with f(x) ur F(x) where X = (xo,xl,...,xn) is %
an arbitrary complex vector.

Proposition: Let x(t) be a second order stationary sto- g

chastic process and H(") the covariance matrix

h )
r(d) . . . « r{n)

LC D :

ol

rl=n). . . . r(0)

(n)

Then R is the Toeplitx matrix assoclated with the spec-

tral distribution 21 Fx(w) (or spectral density function

WPRARSAG

2N f(w) 417 it exists).

APEART

Proof: Bcchner's theorem for the discrete case gives

e

n .
i r(n) = [ PR dF (uw) so that

-1l

)

1 |} L
r(=n) = 20 [ e~ nw afz2n Fx(w)].

v
‘ -1
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Definltion: For each n consider the two sets of real

n y 1
numbers {a (n)} and {b (n,}
v va() V.

, where there exists a
v=()

constant K independent of n and v, such that Iav(n)l < K,

|bv(n)| < K. (av(n)) anc {bv(n)}’ n+= are said to be

equally distributed in [=-K,K] if

n [F(a (M) - ro (Mg
1im. I v v
n+w  y=0 n+1

30’

where F(t) is an arbitrary continuous function orn [=K,K].

Theorem: Let f{(x) be a real valued function such that

nn
J |f(x)]dx < =, and let m and M denote the essential

lower and upper bounds (assumed finite) respectivzly of

f(x). If F()) is any continuous function on [m,M], then

(n) (n)
F(r, ) ...t F(An )

1 n

1 = 3 fn F(f(x))dx,

1im

n+e

(2.0
(n)y

where Ao(n) > cee > xn are the elgenvalues of the
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matrix o™ associated with fi{x). For proofl see [ g5 ].

By considering the integral on the right hand side of

(2.4) as a limit of approximating sums, the theorem shows

that the sets {xv(n)}s.o and (f(u_ 2(v+1)10 )}n are
n+e y=(

equally distributed as n + =, and by proper choice of
P()x) it follows that

1im xo(“) - M, 2.5)

new

These results show that when x(t) is a second order
stationary process with spectrzl density function fx(u),
the eigenvalues xo‘“),...,xn<“) of R(") tend to approxi-
mate 20 rx(m) at an equally spaced set of points in

[-1,1], and in particular,

(n)

1im xo

= max 20 fx(w)
-H: uiﬂ

Pertaining to the asymptotic behavior of eigenwectors, it
is shown in [ 5 ] that a Toeplitz matrix can be approxi-
mated according to a certain norm by a hermitian matrix
(with known eigenvalues and eigenvectors) in such a way
that the distributions of eigenvalues of the two matrices
are asymptotically equal. The mode of convergence, how=-
ever, does not seem to be strong enough to guarantee the

convergence of a transfer function given by an eigenvector
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of 2 Tceplitz matrix to the same 1imit as that of the
transfer function given by the corresponalng elgenvector
of the approximating matrix. In particular, it is shown
that an arbitrary Toeplitz matrix can be approximated by

a matrix with eigenvectors given by (2,3). This might
suggest that the principal component processes might, in
general, tend to give.a frequency decomposition as in the
case of the periodic process. That this 18 not always the
case can be seen by considering a process x(t) of the

opposite extrame,

x(t) A Discrete White Noise Process
Let x{¢) be such that E x(t) = 0, and E{x(t) X(E'}}

=g2 §

gyt The spectral density function of this process

1s

gl
rx(A) = 2 , -n < x<m,

and the covariance matrix

2
S
r(P) - . ,
0 o2
with eigenvalues AO(n) -...-kn(n) = 02 and corresponding

(n)

eigenvectors ¢0("),;..,¢n which may be taken as




v——t

ek

1 c 0
0 1 .
. ’ . sevey . . The transfer furncticn
. - O
; 0 0 1
|
. given by ¢k(n) is hence,
n)
7 le (™ (012 = JetkA2 4y,
§ K
T so that each transfer function passes each frequency with
1 equal weighting. Thus, while the eigenvectors in this
f case are not uniquely determined ( and hence neither are
2
_ the principal compoilent processes) for at least one choice
g of eigenvectors the princiral component processes do not
¥ provide a fraquency decompnsition of the original process,
3
H

It will %e see¢n Za what follows that for many

ctner common processcs certein »f rhe assoclated principal

Lroe st 54

component procescis “2nd tc¢ glve neaningful frequency de-

@it

compositions,

: xit} A First Order Movina Average Process

Let Z(t) be 3 shitc noise process satisfying
E Z(t) = 0, E{2(¢),TTE™) a €,¢1s and let

: x(t) = Z(t) + pZ(t-l), where 6 < |p| < 1,
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Then

(1402 6 _ 0 . . . . o]
4] 1402 o 0 . « 0
0

n
R( ) = . e

a L ] L ] [ ] . 0 p 1*021

b

The spectral density function fy(w) of x(t) 1is
3 2 1
re(w) « 20 | 1 + p° + pe~i¥|

1
=« (1 + 92 + 2pcosw). (2,6)

From the equation of "mechanical quadrature” (see [ 5 ])

1 n 1 N vl
W/ #(x) dx = W r o),
- veuN+L

which holds when #(x) is a trigonometric polynomial whose
degree does not exceed 2N-1, it can be shown that the

eigenvalues of R(n) are given by

5v+12
A (n) = (1 + pz) + 2pcos n+ (2.7)

v

with corresponding eigenvectors,
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i)
g
PR,
¢v(n) = . s Where
n
oon’
u )

(n) 2 (k+1)(v+1)
oK = n+o sin n+ sy V=0,...,n.

@2.8)

When p > 0, A1) > A (M) 5 5 a () apg g (M) n2my (h40)2

= (0} = ma« f (w), If p < 0, the subscripts on the
x(“)'s mus. be reversed in order to have the proper nrder-
ing, After relabeling

(n+1)1 nee 2
Ao(n) = (1 + 0°) + 2pcos nt2 —— (1 = p)

= rx(:n) = max fx(w).
w

For the casen =1, p > 0,

2 (1) 2 2
Ao(l) a (1+p“) + 2pcosll/3 > Al = (1+4p<) + 2pcos3n,
Vi) . 14‘] 0 (1) 14
¢0 ] 1 -lﬂ ’

14?J

1) \ ——— ._L.
") = s x(v) + e x(t=-1),
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(1) = L
277wy =7 MY - x(t=1),

The transfer functions corresponding ro 20(1)(t) and

Zl(l)(t) are

L

1
2 . — b — L PETIRC
Igzo(l)(w)l L7+ ¢ 1 + cosw and

g w) (2 = | - : e~1¥12 o 1 . cosw as shown
g (1Y V2 =2
1
in figures 1 and 2
s )
¢ 1
o %% r o .Y T
Figure 1 Figure 2

Similarly for any finite n,the eigenvector corresponding
to the largest eigenvalue ylelds a principal component
process whose transfer function passes th largest portion
of fx(w).

Proposition: 1im r ( )(m) = 0 for any fixed wr¥0, p>0
nee 2, n
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n 2 (k+1)N 1k
Proof: LYy = g e (sin n+s )e- w
7 (n) k=0

1(k+1)N i(k+1;n
1 e n n+e n+ ) -1k
-2 e

k=0
-1 I -i( i
n+o n n+e * w)k }
-e L e

imz=
e -]

- i
-1 i(ﬁ*? +w ) (n+l)
nes e -1

- € -1 H—
n¥e + w

e -1

1 2 Ninfw) Nop(w)

s T § n+3 ﬁln!ms - antﬁ . For w-woﬂ o,

-lw "
Dy, (w) and D, (w) + e -1 # 0, while IN, (w)| < 2 and

|u1n(w)] < 2. Thus as n + w.gz (n)(w) + 0 and fzo(“)(w)
)
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2
lg n)(m)l f (W) + 0. Hence, the transfer functicn

7 (
0

o]
lg (n)(u)l‘ acts like a & function, &8{w), as n » =, A
Z
0

simllar argument shows that when p < 0,

ISZ (n)(m)|2 » 8(Ju] = ) as n + =,

0

x(t) A First Order aAutoregressive Process

Let Z{t) be a white noise process as above and

x(t) = px(t=l) = 7Z(t), (2.8)
(2.8) may also be written

(1 - pB)x(t) = Z2(t),
where B represents the "backwards lag operator"

1

x(t) = T-pB Z(t). (2.9)

If x(t) is to be a stationary process then [p| < 1, 4n

which case (2.9) may formally be written as

. x(t) = I oV BY 1Zz{(t), or
i vs=(

: ‘ x(t) = L oY 72(t-v), (2.10)
va(
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Usinz (2.123, R'™) can be seen to have the form
. 2 A
lop .« .« D:-l
p 1l « s s+ D
g{n) = o }° . (2.11)
n n=l
D p . . Dl
\ o
2 = 2v
where o = [ p°°, x{(t) has spectral density function
va(

1 2 -]
flw) = -%ﬁ | I—IT; 12 =Sp(l+o - 2pcosw)
-e

{2.12)

which assumes its maximum at w = o when ¢ > 0. While
explicit expressions for the elgenvalues and eigenvec-
tors of R(“) are unfeasible, something can be sald about
the asymptotic properties of the largest eigenvalue and
corresponding eigenvector.

Definition: A matrix A = (aij) is called positive 1if
ay5 > 0 for all 4,].

Then when o > 0, R(n) is a positive matrix, This will
be assumad to be the case 1in what follows,

Theorem (Perron): [see 2 p, 278] If A is a positive

matrix, there is a unique eigenvalue A (A) which has
greatest absolute value, 1s positive, and simple, Its
assoclated eigenvector can be taken to he positive

(have all positive elements).




e izt RIS $6 Mmer i) oy atr e me mmn

SRR

B X LU N -

——

39

k
Theorem(geo):[g} . o= 1im Ac exists and irc an

k+= TX(A)IX

eligenvector of A associated with A(A) for anv positive
vector c. v 1is urnique up to a scalar multiple depend-
ing on the choice of ¢, but otherwise, independent of

the cholce of c.

Lemma (2,1): Let ¢0 = be the positive eiger-

vactor of R(n) corresponding co the largest eigenvalue,

Then 0 < 600 f. 601 :-002*0 n=1 = ¢0 n+l :.--: ¢On

== - -
= ¢00 if n 1s odd.

0 < ‘00 i ¢01 io'ci ¢

20002 ¢On = ¢00 if n is even,

Proof: Only the case n even will be treated explicitly.
Positiveness can be assumed as a result of Perron's
theorem. From theorem (2.9), if ¢ is chosen to be the

vector of 1's, then for any r




L0

7]

(r{P)Te -

(r)

n

7 ¢ a o 2

I

where SJ(”) 15 the jth row sum of (R(N)HT op Sj(r)

(n) 3 (rel) (n)

n
= E sy v » where by " 1is the element in the

vy=()

{n)

Jth row, vth column of R' ', The equality of Sj(r)

(r) , (n)
and S _14 1s obvious from the form of R and ¢, For

r= 1,

ed
50(1) =14+ p+p 4.4 0" < S 20 + o°

i

+...% on_l Ceee¥ sn(l)

2

a 1 + 20 + 202 +,,.+ 2pg

>.44> S (1, So(l). For r =» 2,
n

(2) (1) (1)
S = S0 + oS1

0 + 0252(1) L JPRNPE ann(l) while

(2)

1 - \
57020 = 05, (V) 45 (1) ps,(2) e ..+ o™1s (1)) 50

(2) (2) (1)

(1) 25 (1)
5,87 = 5,7 = epats) T - 501y v (o =0y, Pl

(" . n“)Sn(l) > 0, and by the same type of argument

it can be shown that 80(2) < Sl(?) <eua< Sn(z) e
F)
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> Sﬂ\z) by using only the elements of g(n) and the

ordering cof the SJ(I)'s. Hence, by induction, the

same ordering holds for each power r and the lemma

follows by taking the limit,

Lemma 2,2: Under the hypothesis of lemma 1, $g ;n)

- (n)o <> o
nax ’03 0 as n .

J
Proof:

\ b
[ 1 p 02- « o e o pn °0(n)
b 1 o pn=1 ?
e ¢ o o = O (n)
‘ .01
.n n n b
(n) , (n) , 2| 7 7% 3 * (n)
R ¢, e 1 0" »p eveblDoesp % n
. . 2
‘n n-1 3 (n)
1 D (] . . . 0 1 J ¢00 -J

,
(n) (n) )
aO( ) 00? )
n n
fl %01
- én(“) ¢, én) where
? 2
> (n) (n)
\ao ¢00 )
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[ (n) A (n) 0(")
(n) 2 l 01 » ©02 n-1 %9y
a = J 1 +# o0 = + n — teoot (o]
0 ‘
¢00(n) ¢00(N) o00“)
(n) (n)
(n) _ .2 % n 2%n
an = g 1 + 2D ‘2' -1 + 2p -2 +.00
¢ (n) ¢ (n)
0n on
5 2
n n (n)
{n
Olni % n
0On 2
2
But since ¢o(") is an eigenvector a tn) Ao("),

. A{n)
J =0,..., g. Let Xo(n) = 0  then since x0<") -



);3

(l=p)(1l+p) l+p 2
= lI-DSg = lap =1+ 20+ 20" 4,.., . In the

expression for aé”' it follows from lemma 1 that the
3
J?'

coefficlent of each positive power of p is < 2. Hence

a(") 2
in order for to approach 1 + 2p + 2p° +,.. it
2
-
o ¢(n)
follows that for each fixed k, ° % -k < 1, On the
{n)
%o n
2
n 2
-other hard since I ¢ (n)2 1, then ¢, () 4 0 as
Oov On
v=0 3

n <+ o,

Theorem 2.1: Let ¢0(n) be as in the preceeding lemmas,

n ,
and let go(n)(w) = ¢ tn) give  map lgo(m(m)l2

vs0 Ov

+ §(w) as n +» o,

) (n) 2. 3 ke .
Proof: |g, ()1 ki-n ¢, e, where ¢ = c_

n n 2
(n) (n) 4 ~ + (n)
= I ¢ ¢ so that in particular ¢, = I ¢
vek OV Ov-k 0 yap OV
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n ? n )
=1, Fork <8, § ¢ (M7 _ p p(nmd o (n
7’ 4o 04 jak 03 T0J-k
ce (MP L M m) ) (),
00 cee Ok=1 0Ok 0k no
(n) \
+ Okl (¢0k+1 - @01) ARER K 2<¢0 n" ®y n R
2 2 >
4 - "+ - AY
+ ¢0 E+l\ °0 n+1 ¢0 n+1-k) +, ¢0 n-l(¢o n_l ‘0 n-k“l’
2 ? 2
* 8an (800 = Fgpai) e Bubt 054 = 8,4 94y * ¢ no1s
s e e s @ = ¢ , implies ¢, (¢ = 6 )
0n 0 n Ok "ok 00
?—l ?.‘Fl
* 3ni0n = fonk) * Pok(%k = %00) ~ %00¢%x = *o00)
= (°Gk - ¢00)2, etc., so that the above sum bacomes
n n kel n/2
$o. 2 - T b T 2 v 1 )2

J-0°0J7 RN %3-x ~ a0 Yoy ik (454 = ®04-k

=S, +5, > 0. Since o (n) + 0, then for fixed k,
7z

E“))d + 0asn =+, Let r be the greatest in-

?

Sl < k(¢ﬁ
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teger such that rk

ST

h » 83

» and 1et“a1 = min(rk+1,g)

= min(rk+2, g)...., a = min((r+l)k-1, g). Then S

k=1 )
n/2 . , | ?

" T (g 7 %000 S (o = 90007+ (Bgpy = 0g 024,
2 ) ,

* (80 nm Ao(r-1yk?” * g = 8 1) (8 1 - 0gy)

2
2 2
2

2 2
+ (¢0 k=1 - ¢0 k-l) +eout (¢0 "k_l - ¢0 rk-l)

)2

. Now, each term of (¢., - ¢..)
ko1 ’ Ok 00

* (g p =% a
g

+ (¢0 ok = ¢0k) +...4 (¢0 ok = ¢ (r-l)k) + (¢0 “$0 k.

2% ¥o1

= (¢ o - ¢00) 1s non-negative so that the sum cf squares

of these terms 1s less than or equal to the square of the
sam, The same 1s true for each of the other k-l sums sc
2
< - 0 hd . B i
that S, < k(¢o g 000) +0asn=+o ut this implies

that for each fixed k, ¢, = C k * l as n + », From this

k
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it follows that for any nositive integer I, and any

€ > 0, there exists an interer ™ such that n > M

ny -
=|1 - cy( bc Eﬁff for k = 0,1,...,N. Then

N
< I |e
k==l K k==N = ku-N K

1kwl (n)

- ll < Ea

N
Thus, if the partial sums SN(m) = I eikw of the
k=N

[ ikw
trigonometrical series I e cocnverge to a generale
K®woe

ized function g(w), the transfer function Igo(n)(m)|2

n 1kw
(n)
- I " e must converge to the same function.
k®en

It is shown, however, in Lighthill [6, p. 67] that the

trigonometrical series I eikw converges to the gen-

KkS=cw

eralized function g(w) = 211 L (w = 2kN1), (a train cf

ke
delta functlions). When w 1s restricted to the interval
[-n,1], p({w) is simply 27M&(w), and it then follows that

+m
2n

leg ™) (w) [F—>2ns(w).
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Now suprose p < 0, Let the covariance

matrices and spectral density functions now be denoted

y R(n)-

-7 - - - f
b and fx.m) Since f'x(w) x(w + 1), 1t

follows from the theory of Toeplitz forms that the

R(n)-

eigenvalues of are the same as those of R(n).

n
Theorem 2.2: Let gén)'(w) = I ¢0£")' e~1V¢. vhere

v=(0
(n)- (n)-
QOv is the vth element of ¢0 , the eigenvector
(n) (n')-
corregponding to the largest eigenvalue Ao of R .

Then go(n)'(u) + 0 as n + = for any fixed w such that
|w, f n,

Proof: By direct multiplication, it may he verifiad

that °Oin)- = (-1)“ ooén) so that
(n)= - n v, (n) _-lve n (n) -1(wtﬂ)v’
g (w) vEO (=1) " ¢4y e v£0¢0v e 0

whenever (0w t 1) ¥ O,
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These same results can be obtained to show
the behavior of the first principal component process
of certain higher order moving average and autoregress-
ive processes. For instance, conslder the second order
moving average process x(t) = 72(t) + alz(t - 1)

+ azz(t - 23, wherevZ(t) is a white noise process,
_ 0 < a, < 1, 0 <o, ¢ 1. x(t) has spectral density
é function f () = —%ﬁ (1 + a12

+ 2a2c032m) which attains its maximum at w = 0, The

+ a22 + 2(u1 + alaz)cosm

covariarce matrix in this case is

PR

2 2 .
g l+ul*a2 al"alaz (12 0 - » L] . - L] . L) . .0
‘ 2 2
a1+a‘af 1+u1+a2 01+u1u2 9y 0. .. ..0
2 2
R(n) . as a +x,a,  léc)tay “1*“1“2 e, 0...0
M
| 0
i . 2 ?
e L 0] « 4 8 & s & 8 s e & 02 al+a102 1+015’3.\--

/

¢ The results of Ferron's theorem and its corollary can

PP

poan s @
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be shown (Frobeniusg' theorem {7} to hold for an irre=-
ducible matrix A = (311), where A is called irreducinle

ir aij > 0 and if whenever a = 0 for p # q, there ex-

pa
ists some set of indices 11""'1r such that the indices

Pylyy.esp1,,q are all different and agy # 0,...,2 x #0

P4y 1p-1"p

ay q k0, t can easily be verified that R(“) is irre-
r

ducible, for example, a; 41 = O but 253 £ 0, a3g £ 0,

Lemma 2.1 holds by exactly the same proof as in

the autoregressive case, To show that lemma 2.2 holds,

conslder R(n) ¢O(n)

[ a 8 Y 0 [ ] - * - L] L ] L] » L ] L] * - L ] O W [ QO 1
BaB YO ..ooueoeweowsar 0 ¢
YBaBYO « o o o v o oo a0« 0 ¢2
O YBAEBYO ¢« ¢ v v s o s o0 . 0 .
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0 » ] » . L] O Y 3 G 6 Y j - . L ] L J 0
. °2.
. P4
' ¢
t P N 0 d

e e



S50

N
ac(”) v, 1
al(n) ¢1
= an(n) @n ,
-2 ?—?
{(n)
3 i a ¢
i o1 2,
(n)
an ¢n
5 z
- 4
(n) ) ¢
where a = g +8 + v
W %
¢ ¢ ¢
(n) 0 2 2
a = a + 8(— + ) +Y( )
i .1 °l ET EI
i a2 n.3 n n
' an(;)=a+8 !+ 3 +v| 2 o+ 2=b
z *n n *n *n 5
2 37 =2
i ¢ ¢ $
n n n
a ™ aaasgl 3 o+ T2 a1+ 2-3
. 51 N 3 [
¢ 1 1 -1
i z 7 D)

!
! : °




2 2
and a = 1 + ul + a 3= a +ojay, v = ay - Since

nD
-
[

(n) (n) (n)
= ﬂa

% is an eligenvector, an = a

(n ( .
= AO ) and as n + =, \Okn) + £,(0) = a + 2R + 2v,

(n)

The expression for a, thus shows that as n + =,

2

¢n /¢_+ 1 and ¢

n /¢ > 1. Working backwards then,
n
5‘1 z 2 2

4

it follows that for any fixed k, ¢, /¢, *1lasn=+m=
k 3
and the lemma follows,., Theorem 2.1 then holds exactly

as before, If a; <0, a, > 0, then a, + aja, < 0 and
the spectral density function now denoted by f;(w)

assumes its maximum at X = =], f;(m) = fx(m + 1) so

that the elgenvalues of R(n)- are the same as those of

R(N) except with different ordering, where rINI= 4q

the covariance matrix in the case with o < 0. r(n)=~

can be derived from R(n) by changling the algebraic sign

of every other element and, hence, direct multiplication

[ (n)=)
00
will show that ¢0(n)- = |. , where ¢Oin)-
s (n)=
| On




(n)

= (-l)v 4o, » SO that theorem 2.2 holds.

i Mixed Autoregressive Moving Average Process

R ; _ iet x(t) be a staticnary process of the form

x{t) = px(t=-1) = Z2(t) * aZ(t-1).
i, ] ’ This can be formally written as,

(1 - pB)x(t) = (1 + aB)Z(t)

\
»

! ‘ (1 +aB)
x(t) =« (T =pB) Z(t), where B denotes

: the backwards lag operator. From (2.14) if |p]| < 1,

it

9 : follows that x(t) can be expressed as the infinite mov-

ing averare orocess

x{t) » Z(t) + (0 + a)Z{t=1) ¢ p(p + a)I(t=2) +...

from which 1t follows that

r(g) = 1 + 2pa +&02 = 4 ’
1 = p% 1-0‘
n=1 ) n=1
r(n) = o " [a + p(a< + pa + 1)] =p Y,
1 - p? l-09p

i so that,

e e akcs d o
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(n) . | 1

If p,a > 0, R(M) 15 a positive matrix and if

» Sltl),..., Sn(l) denote 1ts row sums, then

so(l) < Sl(l) P 32(3) >...> sn(l) - So(l)' SO(2)
2

n.y
© 55,0 e ys, (M 4 s, ) w kT N (D
(1) ( (1) 4 )

n-1 2) . (1 .
+pMes M, sy YSq ) 4 85, +vs,( 4,

n -
+ 02 s, (1) ., .+ p"'zssﬂ(l). y < 6 since it is al-

4 :

ways true that [r(t)| < r(0) and vy is real. Hence, 1t

(2
follows that Sl‘ ) > 50(2), and in a simllar way Sn(2)
3
> Sn(z) >eas> 81(2) > 50(2), etc., which implies that
-1

lemma 2.1 holds. The spectral density function of x(t)

2
1 1+ qe” i 1 1+ a° + 2acosw
f (w) = ~20 tw = 21 T+ 92 = Jpcosw .
x l - pe




Ror fixnd n, the row sum & (1)

.n‘
5
§-1 1
= (5 % 2y + 2oy 4.4 207 y) o?
1 2 2
- - 05 (1 +2pa +a ¢ 2(a + p(a” ¢+ pa + 1))

51

+ ola + p(u2 +pa ¢+ 1)) ...+ 20?. (a + p(a + pa + 1))

1 2 2 71
- 2 [(1 + a)° % 20(1 + a)° +,..+ 2p

1 « P (1 + a)?

n n
= > 3+1
4+ 20° (a° + a + 1) + 20 al. As n + = this becomes

1 1 (1 + p)
Toe iy 2 TF e’ T

(1 + a%z
- - p)¢ = 2nrx(o). The same argument as in the auto-
regressive case then shows that lemma 2.2 and hence
theorem 2.1 also hold in this case,.
If both p < 0 and @« < 0 then § > 0, while y < 0}

f;"(m) = (1 + w) has its maximum at w = ; oo(n)‘
x

(6 (n)- ]
00
. (n)= _ v, (n)
- ;én)- » where ¢ o (-1) ¢Ov and hence
an
.

theorem 2.2 holds.




CHAPTER I1I
PROCFSSES WITH NONCONSTANT MEANS

Let y(t) be a real valued second order sta-
tionary process with mean zero, and let x(t) = m(t)
+ y(t), where m(t) is a deterministic but unknown func-
tion. In this chapter the covariances considered will
be expected saﬁple covariances where the sample covari-
ances are computed as if m(t) were constant. Thus, each
covariance will consist of a part due to m(t) and a part
due to y(t) as follows.
Let x(1), x(2),..., x(n + k) be a sample from
the process x(t) and define
7T - %{ n;k x(t = r) = @)+ T re, ..,k
t=k+l
(3.1)
The sample covariance between x(t) and x(t - t) can
then be written as
1 n+k

Sty =n & (x(t) = Oy (x(t - 1) - T )
t=k+1

55
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n+k .
£ (mt) + y(t) = 79 o Ty (m(t - 1)
twlce]

ol Log

+ye -1 - mT Lyl

l n+k

- n I m(t)m(t = 1)
t=sk+]

n+k
I m(t)(y(t -
t=k+1l

o] 1o

¥(1) ]

n+Xx
I m(t - [y(t) - §(0)3
tsk+l

ja § Tog)

n+k
I y(e)y(t = 1) =
t=k+l

o3 10

y(O)y(T)

Since y(t) 1is stationary then (approximately) ES(z1)

1 nt+k
L mem(t - 1) - RO

t=k+l

ROt e ), (3.2

If y(t) is a white noise process, then the equation tes

comes
1 n+k
ES(x) = & & mt)mlt - 1) = mCOIR(T) & °y2610
tek+1

(3.3)
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z{t) A Linear Trend Plus White Noise

I
Let x(t) = m(s) + 2(¢), where 7Z(t) i3 a
white nolse process, EZ{t) = 0, E(2(t) Z(t - 1))
= 072601' and m(t) = a + bt where a and b are ccnstants,
: Then m(t) m(t - t) = (a + bt)(a + b(t = 1))
.'-‘; 2
¥ = (a +bt)((a - bT) + bt) = aa_ + (ab + a b)t + b°t?
¥
5 n+k ntle
L | L m(t) m(t - 1) = aa, + bla + a,) 5 ¢
¥ T gak+l n tek+l
§
| 2 n+k e
# +2 t t2, white m¢O)F(T)
| N pak+l
; n+k n+k
) = é £ (a+bt)d 1 (a+ob(t-1))
t=k+l N taksl

b n+k b n+k
= (g + = L ¢)(a, + = I t)

tak+l T 0 gakel

B N s LR L VR NS T SO

§ +a) Dtk 2 ntk
= aa. ¢+ (2% 2 It o+ 92[ 5 ot]
T n tak+l n® tek+l

2 n+k n+k

b 2 1 2 2

By (3.3) ES_ = = I t°==[ T t)]° + a6 _.
Y T n guegel N tak+l z 10
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Hence, the expected covariance matrixz ER(n) has the

form

gr(n) 4

B e o o ¢ s o+ @ 0'2+G

3

a = the first term above, This is a positlve circular,

matrix, and hence for a given n, ER(?) has eigenvalues

n
xv(N) «c? +a+ (L p J) a, where r, is a root of
=1 Y
né®}
X - 1 =0, When r, = 1, the corresponding eigenvalue

is Xo(n) - g° + (n + 1)a, while if r ¥ 1, xv(n) - o2,

(1)

The eigenvector corresponding to AO(“) is ¢0$") -

/T
1
(1

. p
whose transfer function is |g0(n)(m)‘2

2
1 n 1 n
= r e~tkel | pue, T (e~luyk
n+1l a WAL
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“JE:E [ 1 - ei® —% 0 for any fixed w # 0O,

On the other hand since m(t) 13 non=periodic (2 linear
trend in this case) it can be conslidered as having the
Fourier representation

n

m(t) =[f e
-]

itw aulw),

where du(w) = 0 for w ¥ 0. As a result, the (sample)
power spectrum of x(t) consists of the spectrum of y(t)
plus a Jump at w = 0 due to m(t). The form of the
above transfer function shows that the first principal
component tends to remove this zero frequency or trend

portion of x(t)

x{t) A Periodic Function Plus White Noise

Consider the process x(t) = cos(gt) ¢ 2(t),
where Z(t) 1s a white noise process. For convenlence,
it will be assumed that both n (the sample size) and
N 4+ 1 {the order of the covariance matrix) are always
taken to be divisible by four. Then,
n+k

O 2L T cos(de) =0,
T taked 2
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% Em(t)m(t) = % (0 + 1 + ...) = 1/2,
’ L gm(t)m(t - 1) = 0,

1 smitim(t - 2) =2 (0-1+0...) % =1/2
| 33 n
i

L Im(t)m(t - 3) = 0, ete.

Hence, the expected covariance matrix 1s of the form

[a.241/2 0 -1/2 0 ... 1/2 0 =1/2 0

i o °z2+1/2 0 ....-.-..-..---.....-172
E R(n) - :

Lo ....I.............'.llll..-..".-O-a 2’1/2

Z J

This, again, is a circular matrix with eigenvalues

'ad
A = (0,2 +1/2) + 1/2 g (-l)Jr 23, where r, is
v Z j=1 v v
a root of xN+1 - 1= 0, The expression for Av ASSumes

its maximum value when (ru)zj = (=1)J or when ry = ti,
1 20y

i N¥T

! Since r,, can be expressed in the form r, = e .

+
v* 0,1,...,N. Ai(max.) 1s attained for v = ﬂul and

L D)

v m + U3lnp the same notatlon as in Chapter 3I,
two orthogcnal eigenvectors corresponding to the double

root A {max.)} are given by

'
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r1 - 3 1 -
in 1 3n
e? e #
i ; 1
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Let &(N) be an arbltrary linear combination w(N)

= a¢0$N) + béoxN). The transfer function corresponding

to W(N) is

N Tk 130k _
g
k=0 JN+1 JN‘FI s

N i(ew)k 131 co)k
where gN)(w) = & 1 e 7 b z

{ﬁTT o trﬁfT Ie -0
with N for any value of w different from /2 or 31/2.
For t = 0,1,..., cos(%)t = cos(%g)t, so that any princi-
pal component formed from an eigenvector correspording
to A(max,) will tend to filter out the deterministic

function m(t),




APPENDIX

Figures 1 and 2 of chapter 1I showed the
transfer functions corresponding to the two eigenvectors
of the 2 X 2, (n = 1) covariance matrix of the moving
average process x{t) = Z(t) + .92(t - 1), PFigures 3
and 4 show how these transfer functions change as n
increases,., Figure 3 shows the transfer functions corre-~
sponding to the eigenvectors ¢09 455 ¢u when n = 4,
while figure 4 shows the transfer functions corresponding

te 00’ ¢3, ‘6 fern = 6,

62




4.0

a8

le

% % K R A

Figure 3

w % 7




64

Figure 4
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Flgure 5 shows an example of the bhehavior
of an autorezressive process x(t) + .Gx(t « 1) = Z(%)
together with its flrst and fifth principul component
processes for the case n = U4, Thz series Z(t) consists
of a series of random numbers taken from the Rand table
of Normal Random Deviates, From this series, the serles
y(t) was constructed. The principal component processes
were constructed by numerically determining the eigen-
vectors of the theoretical cuvariance matrix of y{(t)
and applying the appropriate filters to y(t). The first
principal component process can be seen to consist pri-

marily of oscillations with period two, while the fifth

principal component process contains oscillations of much

lower frequencies.
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Pigure 5
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Fizure £ shows a sample cf the process x{t)
= —%5 t + SCOS%t + y{t), where y(t) + .9y(t = 1) = Z(t),
Z(t) a white noise process. Also shown are the first
and second principal component processes for n = 18§,

The process x{t) was constructed by taking as Z(t), two
hundred numbers from the Rand Table of Random Normal
Deviates, eonstructing y{(t), and combining y(t) with
-%Ut and 5cosgt. The data was keypunched and the prin-
cipal components determined (from the sample covsariance
matrix) using the BMDOIM principal component program,
This process was selected as an example since it might
resemble an unseasonally adjJusted economic serles.

The first principal component contains the
linear trend plus some low frequency oscillations, while
the second principal component seems to conslist almost
entirely of csclllations with period four corresponding
to the cosine term, The third principal component (not
shown) also consists primarily of oscillations with
period four as would be expected from the results of
chapter III, while the fourth (also not shown) component
contains osclllations of period two from the autoregress-

ive process.
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Figure 7 shows a serles x(t) = loge (the
totai U.S, Personal Income) , a quarterly, seasonally
adjusted series froum "Survey of Current Business”,
from first quarter 1958 through fourth quarter 1968,
Shown with x(t) is its first principal component process
multiplied‘by a scale factor so that 1t fits the ori-
ginal series. These principal components were also com=-
puted using the BMDOIM program. In this exampie, n was
thosen to be equal to six, Figure 8 shows the second

principal component on a greatly magnifled scale,
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